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Abstract. Preprocessing is an important rst step in side-channel
attacks, especially for template attacks. Typical processing techniques,
such as Principal Component Analysis (PCA) and Singular Spectrum
Analysis (SSA), mainly aim to reduce noise and/or extract useful infor-
mation from raw data, and they are barely robust to tolerate dierences
between proling and target traces. In this paper, we propose an ecient
and easy-to-implement approach to preprocessing by applying the data
augmentation method from deep learning, whose appropriate parameters
can be eciently determined using a simple validation. Our trace aug-
mentation method, when added prior to existing proling methods, sig-
nicantly enhances robustness and improves performance of the attacks.
Simulation-based experiments show that our approach not only results
in a more robust proling (even show an enhancement to the known
robust prolings), but also works well in the ideal scenario (no distortions
between proling and target traces). The results of FPGA-based and
software experiments are consistent to the ones of simulation-based coun-
terparts. Thus, we conclude that the proposed augmentation method is
an ecient performance-boosting add-on to proled side-channel attacks
in real world.

1 Introduction

1.1 Motivation

The crypto community has witnessed the fast development of Side-Channel
Attacks (SCAs) since Kocher’s original works [1113], and various more ecient
SCA methods are proposed for dierent scenarios. Proled SCA, rst proposed
by Chari et al. [5], adds a proling phase (prior to the online exploitation phase)
to the original SCA and can be considered as the powerful class of power analy-
sis. Since then, various proled SCA methods have been introduced and studied
(see [6,15,19,2426] for an incomplete list).
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Despite its excellent eectiveness, proled SCA presumes high similarity
between proling device and target device, which might otherwise result in less
desirable performance and thus limit their applicability in practice. This issue
was noticed and studied by Standaert et al. [22], Elaabid and Guilley [10] and
Choudhary and Kuhn [7]. Furthermore, Whitnall and Oswald [26] proposed a
robust proling method by applying clustering technique, and Wang et al. [24]
proposed another robust proling technique using the ridge regression method.
To the best of our knowledge, all the existing solutions mainly focus on the
proling phase rather than preprocessing stage.

1.2 Preprocessing Techniques

Preprocessing techniques are widely used to increase the success rate of side-
channel analysis. The most widely used technique is Principal Components Anal-
ysis (PCA), which was rst introduced by Archambeau et al. [1] and extended
by Batina et al. [3]. Standaert and Archambeau [21] compared PCA with a more
contrived method named Fisher Linear Discriminant Analysis (LDA). Bruneau
et al. [4] carried out a mathematical analysis of dimensionality reduction methods
(i.e., PCA and LDA), and they concluded that LDA is asymptotically the opti-
mal dimensionality reduction strategy. Choudary and Kuhn [6] compared several
Points of Interest (POI) techniques and discussed the rules of selecting compo-
nents. Recently, Merino Del Pozo and Standaert [17] used Singular Spectrum
Analysis (SSA), a technique originally used in time series analysis, to ameliorate
the Signal Noise Ratio (SNR) of raw traces. We stress that the aforementioned
preprocessing techniques may not work well with deviated target devices, and
they need to rely on subsequent robust proling techniques. To resolve the issue,
we propose a new preprocessing method based on data augmentation.

1.3 Data Augmentation

The term data augmentation refers to methods for constructing iterative opti-
mization or sampling algorithms via the introduction of unobserved data or
latent variables. This method was popularized in the deep learning community
and it can produce a better proling set to mitigate overtting and build a more
robust model. Simard et al. [20] rst created a general set of elastic distortions
that vastly expanded the size of the training set. Moreover, in deep learning, it
is the easiest and most common method to articially enlarge the dataset using
label-preserving transformations (e.g., [8,9,18]) in order to reduce overtting.
Krizhevsky et al. [14] signicantly reduced the error rate using data augmenta-
tion techniques.

1.4 Our Contributions

In this paper, we tackle the following problem:

What can be done during (or even before)
the preprocessing stage to make the subsequent attacks more robust?
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We answer this question armatively. Borrowing ideas from deep learning, we
introduce the “trace augmentation” technique (i.e., applying data augmentation
in the SCA context), which shifts each trace to some random extent and then
combine them all (both original and perturbed traces) to form an augmented
trace set. Our trace augmentation method can be applied prior to existing pre-
processing procedures (e.g., PCA, LDA) and signicantly improve the robustness
and performance of the attacks.

Further, we propose a very ecient method (named lazy validation) to nd
out an appropriate range of the shift, only based on the proling traces. Infor-
mally speaking, this method splits the proling traces into two partitions, proles
on one distorted partition, validates (by conducting attacks) on the other undis-
torted one, and chooses the largest range of distortion that doesn’t essentially
impact the result of the attack. Intuitively, the resulting suggestion can be seen
as a conservative one that at least doesn’t impact the eectiveness in the ideal
setting (where there are no distortions between proling and target trace).

At last, we conduct both simulation-based and practical experiments to ver-
ify our approach. They both show that trace augmentation not only improves
the performance of the subsequent attack in scenarios where discrepancy exists
between the proling device and target device, but also works well in the ideal
case (i.e., without distortions). In addition, simulated-based results suggest that
the improvement of our method is related to the correlation among points of each
trace. In the practical setting, we carry out the experiments on both software
and FPGA implementations, whose results are consistent to the simulation.

2 Trace Augmentation

In this section, we present our trace augmentation method, and show how to
determine the suitable parameters eciently. We stress that trace augmentation
can either work independently, or can be added prior to any other preprocessing
techniques such as PCA, in order to produce a more robust trace set.

2.1 Trace Augmentation Through Random Shift

Generally speaking, this augmentation approach manages to increase the number
of traces exploitable in proling phase, in order to improve the robustness and
performance in proled SCA. This is achieved through random shift of each trace
to form an expanded trace set (i.e. in this process we misalign the traces by
shifting the trace entirely). We visualized this random-shift-based augmentation
approach in Fig. 1 and we sketch its procedure as follows.

1. Shift each trace horizontally at random up to some extent (the shift ratio to
be determined later).

2. Repeat step 1 several times (corresponding to the augmentation ratio) to
yield many perturbed traces.

3. Append these new perturbed traces to original set.
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Before 
augmentation

Augmentation
yields more traces

Shift randomly 
then combine

Fig. 1. A visual illustration of trace augmentation.

The above is parameterized by the shift ratio and augmentation ratio,
denoted as  and C respectively. The shift ratio , quanties the extent of ran-
dom shift: perturb each trace with a horizontal random shift drawn uniformly
from [− ·d,  ·d], where d denotes the number of leakage points. The number of
expanded traces is determined by the augmentation ratio C, shift ratio  and the
original trace number, that is, we have that Nnew = C · Noriginal, where Nnew

and Noriginal are the numbers of original and new added traces respectively.
Algorithm 1 presents this approach in formal details.

Intuitively, the more traces to exploit in the proling phase the more eec-
tive the attack will be (against the target device). This motivates our approach
which, given a xed number of traces, augments the trace set (and exploit its
information) as much as possible for a better performance in proled SCA. The
idea to enlarge the existing trace set is to apply perturbations since enlarging the
dataset using such label-preserving method is the most straightforward yet e-
cient way to reduce overtting. This approach works well especially when trace
set is small. Moreover, we suggest to combine the trace augmentation approach
with some data selecting (or points of interests) method such as PCA and LDA.

2.2 Search for Appropriate Parameter Though Lazy-Validation

As illustrated above, there are two undetermined parameters (i.e.,  and C), and
it is somewhat tricky to dene a general rule for to select them. We noted that the
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Algorithm 1. Trace augmentation
Input: original trace set L (Noriginal traces), number of leakage points d, shift

ratio , augmentation ratio C
Output: augmented trace set Lagmt composed of Noriginal +  · CNoriginal

traces
1 Append L to Lagmt;
2 for i = 1 to Noriginal do
3 Generate C traces by randomly shift Li;
4 /* Note that each point of same trace shares a common horizontal

shift */

5 Append the new traces to Lagmt;

6 end for
7 return Lagmt;

choice of  aect the improvement of trace augmentation signicantly, whereas
(as veried in Appendix A) the choice of the other one (i.e., C) does not change
the result much. We simply choose C = 10, and (as shown in Algorithm 2) design
a lazy-validation method to yield a conservatively appropriate value for . We
sketch the procedure as follows.

1. Select C = 10.
2. Split proling traces into two (disjoint) partitions at random.
3. Perform trace augmentation on one partition with a certain shift ratio.
4. Build the template from this augmented partition.
5. Perform proled SCA on the other partition with the template, and calculate

a guessing entropy.
6. Repeat steps 35 with varied shift ratios, and obtain guessing entropy for

each.
7. Select  as the largest shift ratio that doesn’t impact the result of the attack.

The underlying intuition of this procedure is that it is safe to perturb traces
to some certain extent as long as it does not aect the performance in the
ideal setting (no misalignment between proling and target trace). Thus, the
largest possible  in respect of this condition can be seen as a conservative one.
The optimal value of  is highly specic to actual target trace set, whereas our
conservative choice is in general an appropriate one universal for target traces
with dierent levels of misalignment.

On the other hand, such lazy-validation might cost a little more time to yield
the nal parameter (). However, these procedures (including both augmentation
and validation) are supposed to be nished at proling stage, and attackers
just end up getting a robust template. Therefore, attacking time will not be
lengthened in practical.
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Algorithm 2. Lazy-Validation
Input: original trace set L (Noriginal traces), number of leakage points d, a

vector of candidates of shift ratio Γ in ascending order
Output: an appropriate shift ratio ̂

1 Split L into two random partitions Lprof and Lvalid;

2 Build template T from Lprof ;

3 ge0 ← CalculateGuessingEntropy(T, Lvalid);
4 ̂ is initialized to the rst element of Γ ;
5 for each  ∈ Γ do

6 Lagmt ← TraceAugmentation(Lprof , d, , C = 10);
7 Build template T ′ from Lagmt;

8 ge ← CalculateGuessingEntropy(T ′, Lvalid);
9 if ge > ge0 then

10 break;
11 end if
12 ̂ ← ;

13 end for
14 return ̂;

3 Experimental Results

We test our approach through simulation-based and practical experiments. In
simulation scenes, we disturb the power model of proling and attacking stages.
Whereas in practical scenes, since changing power model is knotty to control,
we follow Whitnall and Oswald [26] and conduct the experiments by adding
misalignment between proling and target traces. We target on the rst 8 bits
of the AES’s subkey and the output of the corresponding S-box in the rst round.
To evaluate the eectiveness of our method, we compute the guessing entropy
[23] for comparison; in particular, we mount attacks for 100 times on dierent
inputs and then compute the average rank of the correct key.

3.1 Simulation-Based Experiments

In simulation-based experiments, we assume that the leakage is subject to the
multi-variant Gaussian distribution. Thus, we choose the mean of the distribu-
tion by randomly picking numbers and rely on a rened method named ‘vine’
[16] to simulate the covariance matrix. The ‘vine’ method is an ecient way to
generate random correlation matrices, and correlations between leakage points
are controlled by a single parameter : higher  value corresponds to the more
dependencies among points of each trace (please refer to Appendix B for more
details). In order to simulate the imperfect case where proling and attacking
traces exist discrepancies, we perturb the (standardized) leakage function of the
exploitation trace by imposing a ‘noise’ of uniform distribution U(−5, 5). And
then we can generate the deviated exploitation trace using the perturbed leakage
function.
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Impacts of Correlation Among Points. Our augmentation method is fol-
lowed by LDA (reduced to only one point) to extract the points of interest and
the Gaussian template [5] building is used as the proling phase. Figure 2 com-
pares the guessing entropies of proled attacks by varying the power model of
proling and target traces, using dierent correlation matrices (reected by the
value of ), with and without using trace augmentation. It shows that with aug-
mentation the guessing entropies are declining much faster than those without
augmentation ( = 0), not only in imperfect cases with noise (as expected), but
also in the ideal cases (no noise). A probable reason of this surprising result
might be that more traces (although articial one) can be accessed in proling
phase to overcome ‘overtting’ issue.

Further, we can see that attacks using augmentation are more ‘insensitive’
to  and in contrast, without augmentation, attacks are much more aected and
become less eective while  decreases. We thus conclude that the eectiveness
of this approach is enhanced while correlations among points are increasing (as
 decreases). This means the power of this preprocessing method is correlated
with the characteristics of the trace itself.

(a) perfect case (without discrepancy) (b) introducing noise as discrepancy

Fig. 2. The guessing entropies by varying the distribution between proling and target
traces (in terms of power model used), where simulation-implementation consists of 50
leaking points; 100 repetitions (to compute the guessing entropies) and 2000 proling
traces; using Gaussian templates

Enhancing the Robust Profiling Algorithm. We combine the our new
method with the robust proling algorithm proposed by Whitnall and Oswald
[26]. We use K-means and Dierential Cluster Analysis (DCA) introducted in
[2] to perform attacks on target traces, in which the ‘optimal’ cluster number
is according to the silhouette of the attack result. And other simulation facts
are similar to the former simulation instance but  is xed to 1.0. Figure 3
compares the guessing entropies of proled attacks by dierent power models of
proling and target traces, with and without trace augmentation. It shows that
with augmentation the guessing entropies are declining much faster than those
without augmentation ( = 0%), even in the ideal cases (no discrepancy). We
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may conclude that even combining with robust algorithm (such as K-means), our
trace augmentation technique can improve the performance in proled attacks.
Besides, we also provide comparison with another robust proling algorithm
(named ridge-based proling [24]) in real FPGA-based contexts later (see Fig. 6).

(a) perfect case (without discrepancy) (b) introducing noise as discrepancy

Fig. 3. The guessing entropies by varying the distribution between proling and target
traces (with dierent ), where simulation-implementation consists of 50 leaking points;
100 repetitions (to compute the guessing entropies) and 2000 proling traces; using
cluster-based templates (K-means with DCA)

3.2 Software-Based Experiments

In software scenario, we target the AES implementation on Atmel ATMega-163
whose traces consist of 54 leakage points. Our augmentation method is followed
by PCA (to reduce to 70% principal components [6]) to extract the points of
interest and carry out the Gaussian templates building [5] as the proling phase.
Particularly, we use Hamming weight of target values as mean values in templates
building, considering of its software implementation.

To provide a more comprehensive evaluation, we vary the parameter (of trace
augmentation)  from 10% to 35%, and the value  = 15% is picked by lazy-
validation of Sect. 2.2. For comparison, we also give the guessing entropies with-
out trace augmentation. In such scenes, we follow Whitnall and Oswald [26] and
conduct the experiments by adding misalignment between proling and target
traces. Note that this ‘misalignment’ (which misalign target traces with same
points) should not be confused with ‘shift’ mentioned before.

As shown in Fig. 4, with trace augmentation the performance of attacks have
been improved in all settings even for those without misalignment. Note that
misaligns of each trace are common for the same trace set. Further, we can
see from following 6 sub-gures that the improvement of trace augmentation
becomes more signicant as the misalignment increases. Another observation is
that, despite not always being the optimal, parameter  chosen by lazy-validation
is good enough for the attacks.
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(a) no misalignment (b) misalignment = 5%

(c) misalignment = 10% (d) misalignment = 15%

(e) misalignment = 20% (f) misalignment = 25%

Fig. 4. The guessing entropies by varying the amount of deviation between proling
and target traces (in terms of misalignment), where software-implementation consists
of 54 leaking points; 100 repetitions (to compute the guessing entropies) and 4000
proling traces; using Gaussian templates
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(a) no misalignment (b) misalignment = 5%

(c) misalignment = 10% (d) misalignment = 15%

(e) misalignment = 20% (f) misalignment = 25%

Fig. 5. The guessing entropies by varying the amount of deviation between proling
and target traces (in terms of misalignment), where FPGA-implementation consists
of 20 leaking points; 100 repetitions (to compute the guessing entropies) and 5000
proling traces; using linear-regression-based proling
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3.3 FPGA-Based Experiments

In hardware scenario, we target the AES implementation running on SAKURA-
X board, whose traces contain 20 leakage points. Our attack strategy is simi-
lar to the one in software-based experiments, except for using linear-regression
based proling (in which the degree of power model is 1) from [19,25]. Compare
to Gaussian template building, linear-regression based proling can build up a
model more eciently with less number of measurements thus is more suitable
to the FPGA scenario (with larger noise). In such scenes, we also conduct the
experiments by adding misalignment between proling and target traces as same
as what we do in software experiments.

As shown in Fig. 5, the results of FPGA-based experiments is very similar
to the software-based and simulation-based ones. Specically, in the scenarios of
high misalignment, the attacks without trace augmentation hardly distinguishes

(a) no misalignment (b) misalignment = 5%

(c) misalignment = 10% (d) misalignment = 15%

Fig. 6. The guessing entropies by varying the amount of deviation between proling
and target traces (in terms of misalignment), where FPGA-implementation consists
of 20 leaking points; 100 repetitions (to compute the guessing entropies) and 5000
proling traces; using ridge-based proling



Trace Augmentation 243

between correct and incorrect keys, whereas the guessing entropies with trace
augmentation still tend to zero.

The combination of trace augmentation with another known robust proling
method is also very interesting. Thus in Fig. 6 we present the guessing entropies
of the attacks using ridge-based proling (in which the degree of power model
is 4) from [24] when combined with trace augmentation (and other experiments
settings are same as the former one using linear regression based proling).
The result shows that our trace augmentation can also improve known robust
proling’s performance.

4 Conclusion

In this paper, we show that trace augmentation based preprocessing can eec-
tively improve the performance of proled SCA, in both scenarios where the
proling device either deviates signicantly from (or behaves close to) the target
device. Further, we use a fast method called lazy-validation to obtain conserva-
tive but appropriate parameters. Finally, we provide simulation-based and prac-
tical experiments to conrm the eectiveness of our approach, and the former
also indicates that the improvement of our approach (over other preprocessing
techniques) depends on the correlation among points of each trace. We leave it
as future work to explore other possible ways to augment the trace without using
distortion, and whether such preprocessing strategies (if exist) can outperform
trace augmentation.

Acknowledgment. This work is supported by the National Natural Science Foun-
dation of China (Nos. 61472249, 61572149, 61572192, U1536103, 61402286, 61472250),
the Major State Basic Research Development Program (973 Plan, 2013CB338004),
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tion & Research Cooperation Program of Minhang District (2016MH310) and Inter-
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(2016KW-038).

A The Impact of Augmentation Ratio C

Figure 7 shows the impact of augmentation ratio C in trace augmentation, and
we can see that it is insignicant to the improvement.
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Fig. 7. The guessing entropies by varying augmentation ratio C in ideal scenario (no
misalignment); simulation-based experiment containing 50 leakage points; 100 repeti-
tions (to compute the guessing entropies) and 2000 proling traces

B Correlation Matrices

‘Vine’ works in this way: o-diagonal values are derived from a beta distribution
whose parameters satisfying  = , then perform a linear transform of these val-
ues to the interval [−1.0, +1.0] (since beta distribution is dened on the interval
[0, 1]). Correspondingly, values of correlation matrix are controlled by the single
parameter higher  value corresponds to the less dependencies among points
of each trace.

The correlation matrices of varied  value are provided as Fig. 8, colored
according to correlations, from [−1.0, +1.0]. It is observed that correlations
among points are enhanced as  decreasing.
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(a) β = 0.1 (b) β = 1

(c) β = 5 (d) β = 10

Fig. 8. Correlation matrix (50 × 50) of each  parameter: 0.1, 1, 5, 10
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